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Abstract

An overview of current unstructured mesh generation and adaptivity techniques is given.

Basic building blocks taken from the field of computational geometry are first described.

Various practical mesh generation techniques based on these algorithms are then constructed

and illustrated with examples. Issues of adaptive meshing and stretched mesh generation

for anisotropic problems are treated in subsequent sections. The presentation is organized

in an educational manner, for readers familiar with computational fluid dynamics, wishing

to learn more about current unstructured mesh techniques.
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1 Introduction

The generation of unstructured meshes for computational fluid dynamics problems has evolved

rapidly over the last ten years. In fact, it has been stated recently that unstructured mesh generation
has reached such a level of maturity that it can be considered a solved problem. Certainly, the

generation of unstructured meshes about arbitrarily complex three-dimensional configurations can

be routinely performed on present-day workstations, with currently available techniques. In fact,

a reader with good programming skills and persistence should be able to create his/her owl, mesh

generation code from the information contained in these notes, ttowever, it would be premature to

state that further inlprovements are not needed in this field. Of the various techniques described in

these notes, each has its particular strengths and weaknesses. Further improvements in efficiency,

and especially robustness are surely needed. A good definition of an optimal mesh, as this relates

to numerical properties of the solution scheme is still lacking, and with it, appropriate techniques

for constructing such optimal meshes, particularly for anisotropic or stretched-mesh generation.

Many of the successful algorithms in unstructured mesh generation have found their roots in

the field of computational geometry. Computational geometry is the theoretical science concerned

with defining or postulating tile existence of specific geometrical constructs (i.e., particular tri-

angulations in our case), devising algorithms for generating these constructs, and analyzing the

complexity of these algorithms (usually asymptotic worst case complexities). For example, the

Delaunay triangulation represents a fundamental computational geometrical construct for which

many construction algorithms have been devised and analyzed [1, 2]. Unfortunately, much of the

computational geometry work has been confined to two-dimensional triangulations, which consti-

tute planar graphs, and are thus easier to analyze. Also, the concept of an optimal triangulation

or algorithm from a computational geometry point of view does not always coincide with the view

from a computational-fluid-dynamics point of view, and thus many of the computational geom-

etry results have found little use in the area of unstructured mesh generation. Great progress

in unstructured mesh generation has been made by devising heuristic algorithms combined with

empirical experience. In some sense, the engineering field of mesh generation has outstriped the

more theoretical field of computational geometry, particularly for three-dimensional constructions.

However, while heuristic algorithms may work well for most cases encountered in practice, the

lack of any sound theoretical justification of these algorithms leaves the door open for possible

situations which may result in failure or greatly increased comple_ty of the algorithm. Hence, the

construction of efficient and particularly robust mesh generation techniques can only be achieved

through algorithms with solid theoretical justification.

Tile purpose of these notes is to familiarize the reader with current techniques for unstruc-

tured mesh generation, while exposing their individual strengths and weaknesses. A preliminary

discussion of selected computational geometry algorithms which are most relevant to mesh gen-

eration techniques is first given. Once these essentials have been outlined, a critical description

of various mesh generation approaches in both two- and three-dimensions is given. The issue of

mesh adaptation is discussed in a following section. In the final section, modifications to the de-

scribed algorithms as well as alternate strategies for generating anisotropic or stretched meshes are
described.

The data-structures required for efficient implementation of many of these algorithms are not

discussed in detail. Their description and analysis can be found in appropriate computer science

text books. The main data-structures employed in the algorithms of this chapter are the heap-list,

and the region quadtree. The heap-list represents a particular implementation of a priority queue,

which enables the ordering of elements based on a key [3]. Tile region quadtree, or octree in three

dimensions, is a spatial decomposition data-structure, which enables efficient implementation of

spatial search operations such as proximity searches. Quadtrees are discussed ill detail in [4]. Both

the quadtree and the heap-list are dynamic data-structures, i.e., they enable simple operations
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such as insertion and deletion of elements, and are thus particularly well suited for mesh generation

and adaptation purposes.

2 Computational Geometry Constructs and Algorithms

2.1 The Delaunay Triangulation

Given a set of points {P} in a plane, there exists many ways to join the points together to form a

set of non-overlapping triangles which completely covers the domain. The Delaunay triangulation

represents a particular construction of this type which has various well defined properties. For

example, tile Delaunay triangulation is the dual of the Voronoi Tessalation. A Voronoi Tessalation

is the graph obtained by drawing the median line-segments which separate the plane into regions

which are closer to a given point of {P} than to any other point in the set {P}, as shown in Figure

1.

Figure 1: Voronoi tessalation and corresponding Delaunay triangulation of a set of points

in the plane, illustrating the enlpty circulncircle property.

If we draw a line segment between any two points which are neighbors in this Voronoi diagram, we

obtain the Delaunay triangulation of these points.

Another property of the Delaunay triangulation is known as tim empty circumcircle property.

This states that no point of the forming set {P} can be contained inside the circnmcircle of any

triangle, as shown in Figure 1.

It is also well known that the Delaunay triangulation corresponds to a max-rain triangulation,

i.e.. out of all the possible triangulations of a given set of points, it is the triangulation which

incurs the largest minimum angle for all triangular elements. Thus. a Delaunay triangulation may

be expected to result in "well-shaped" elements, without very small angles.

While there are many other properties associated with the Delaunay triangulation [1, 2], the

above are the most useful for mesh generation purposes.

The empty circumcircle property, in particular, is attractive, since it extends readily to three

dimensions, by considering the circumsphere associated with each tetrahedron. The empty circum-

circle/sphere property forms the basis for several Delaunay triangulation algorithms in both two

and three dimensions, which are described below.

2.1.1 Bowyer-Watson Algorithm

This is an incremental algorithm which assumes new points are added sequentially to an existing

Delaunay triangulation [5, 6]. When a new point is inserted into the triangulation, the first task



is to identify all existing triangles whose circumcircle is intersected by tile new point, as shown

in Figure 2. This can be achieved by first locating the triangle which contains the new point.

The circumcircle of this triangle must certainly be intersected by the new point. The remaining

intersected triangles can be identified by first searching the neighbors of tile containing triangle,

and then the neighbors of these neighbors, in a breadth-first type search, abandoning the search

along any neighbor path where the test result is negative. Properties of the Delaunay triangulation

guarantee that such a neighbor search is sufficient lo locate all intersected triangles. Tile union of

these intersected triangles is then removed from the current triangulation, thus creating a convex

cavity which contains the new point, as shown in Figure 2. A new triangulation is then constructed

by joining the new point to all vertices on the boundary of the polygonal cavity. The algorithm

extends naturally to three dimensions by considering the circumspheres of tetrahedra and results

in the retetrahedralization of a convex polyhedral cavity. Proofs of the convexity of the resulting

cavity, and tile validity of the retriangulation of this cavity have been formulated in the literature

[6, 7].

Figure 2: Illustration of tile Bowyer/Watson algorithm for constructing Delaunay trian-

gulations.

In order to construct the Delaunay triangulation of a set of points using this algorithm, an initial

triangulation is constructed, either by forming the triangulation of the convex hull of the points

[2], or more simply by creating a large initial triangulation, using three or four auxiliary points (in

two dimensions), which contains all of the points to be triangulated. The points of the set to be

triangulated are then put in a list, and inserted sequentially into the evolving triangulation.

The Bowyer-Watson algorithm has proven to be very useful for unstructed mesh generation. It

has been shunned by the computational geometry field, mainly due to its poor worst-case complex-

ity of O(N 2) (imagine the case where each newly inserted point intersects all existing triangles).

ttowever, for unstructed mesh generation, near linear O{ N) performance has been reported for both

two- and three-dimensional applications [7, 8, 9]. More recently, it has been shown that the poor

worst-case complexity of this algorithm represents a pathological case which can easily be avoided

by randomizing the order in which the points are inserted [10].

2.1.2 Green-Sibson Algorithm

This algorithm is similar to the Bowyer-Watson algorithm in that it is based on sequential point-

insertion into an existing triangulation, and also relies on the empty circumcircle property [11]. To

insert a new point into the triangulation, the triangle which encloses this new point is first located.

The point is then inserted into the triangulation simply by joining it to the three vertices of the

enclosing triangle, as shown in Figure 3. (In the case where the point falls on a mesh edge, the



edgeis split and the point,is joinedto four meshvertices;situationsin threedimensionsinvoiving
split facesandedges are treated analogously).

Figure 3: Illustration of the Green-Sibson algorithm for constructing I)elaunay triangula-
tions.

The resulting triangulation, although valid, is not necessarily Delaunay, and tile remaining task

is to transform it. into tile Delaunay triangulation by rearranging the mesh connectivity in the

vicinity of tile new point. This is accomplished by examining the three (or four) newly formed

triangles. If their circumcircles are all empty, then the triangulation is indeed Detaunay, and no

further modifications are required. In the event one of these circumcircles contains a vertex, the

edge of the triangle which borders on an "outer" neighbor (i.e., one which does not touch the

newly inserted point), is reconfigured or swapped as shown in Figure 3. Tile reason only these

outer edges need be considered is that the initial three (or four) edges which touch the newly

inserted point, can always be shown to be part. of the final Delaunay triangulation (i._.. consider

how they may appear in the Bowyer-Watson algorithm). Each time an edge is swapped, two

triangles are altered, and these must therefore be checked for the Delaunay criterion, ltowever.

each edge that is swapped can he shown to be included in tile final Delaunay construction, and

thus the only edges which need be considered for swapping are those which border on a modified

triangle and an "outer" untouched triangle. The edge swapping procedure begins with the outer

edges of the newly formed triangles (which contain the new point as a vertex), and propagates

outwards, never reexamining the previously swapped edges, until the procedure terminates wheu

no further edges need be swapped. There are certain practical advantages associated with tile

Green-Sibson algorithm over the Bowyer-Watson algorithm, for constrained triangulations, as we!l

as for generating triangulations other than Delaunay, as will be demonstrated.

2.1.3 Tanemura-Merriam Algorithm

While the previous algorithms represent a top-down approach, a bottom-up approach to construct-

ing the Delaunay triangulation of a given set of points is afforded by the advancing-front Delaunay

algorithm. This technique has apparently been rediscovered several times in various fields through-

out the literature [12, 13, 14, 15]. The idea is to construct the triangulation one triangle at a

time, beginning at the boundaries of the domain, thus advancing or sweeping a front throughout

the domain. The initial front is composed of the set of edge segments which define the convex

hull of the point-set to be triangulated (or, for mesh generation purposes, the set of edges which

define all physical boundaries of the domain). We begin by choosing an edge of this front. The

problem consists of determining the particular point to which the two end points of this edge must

be joined in order to construct, the unique Delaunay triangle for this edge. which will be present



in the final triangulation. This maybesolvedin a simpleiterativemanner.All arbitrary interior

point (interior with respect to the orientation of the front) is chosen, and the triangle formed by the

two end-points of the front edge and the interior point is constructed. If this triangle contains ally

other points within its circumcircle, it cannot be a valid Delaunay triangle, and thus an alternate

point is chosen: i.e. the point contained inside the newly formed circumcircle which is closest to
its circumcenter.
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Figure 4: Iterative procedure for determining appropriate point for constructing the next

triangle in the advancing-front Delaunay triangulation algorithm.

By iterating on this procedure, as shown in Figure 4, the appropriate point which produces a

triangle containing no points interior to its circumcircle is eventually found. This new triangle is

therefore accepted, and the front is advanced by removing the current edge from the front, which

is now obscured by the new triangle, and adding the new edges to the front. (There may be 0, 1, or

2 new edges depending on whether the chosen point is interior to, or on the front). The algorithm
terminates once all edges have been deleted fl'om the front, i.e., when the entire domain has been

swept out.

2.1.4 Constrained Delaunay Triangulations

A triangulation of a given set of points which is forced to include as a subset of predetermined edges,

is known as a constrained triangulation. Loosely speaking, a constrained triangulation which is as

close as possible to a Delaunay triangulation is called a constrained Delaunay triangulation. A more

formal definition of a constrained Delaunay triangulation is given by Chew [16]: it is a triangulation

which contains a set of prescribed edges, and such that the circumcircle of each triangle contains

no other vertex of the mesh which is visible to it. A vertex is visible to a triangle if the line joining

the vertex to any point interior to the triangle does not intersect one of the prescribed edges of the

mesh. An example of a constrained Delaunay triangulation is given in Figure 5. The existence of

constrained Delaunay triangulations ensures the validity of the Tanemura-Merriam algorithm for

arbitrary initial (possibly non-convex) fronts. It also guarantees the possibility of modifying an
existing Delaunay triangulation to include a set of edges which define the boundaries of the domain

to be triangulated.



Figure 5: Illustration of constrained Delaunay triangulation.

This is an important consideration for practical mesh generation algorithms, where non-convex

and multiply connected domains are often considered. Unfortunately. an equivalent definition for

constrained Delaunay triangulations in three dimensions is not available. Thus, the construction
and modification of three-dinmnsional Delaunay triangulations, which conforln to a prescribed

surface triangulation, has proved to be a non-trivial problem.

2.2 Other Triangulations and Transformation Algorithms

The Delaunay Triangulation is but one of a large number of possible triangulations of a given set

of points. Other possible triangulations include the minimum total edge-length triangnlation, or

minimum weight triangulation, and the minimum maximum-angle triangulation [2]. In fact, any

criterion for describing an optimum triangulation may be constructed, even one based on possible

variable data-values stored at the vertices of the triangulation, such as in the data-dependent tri-

angulations of [17], and an algorithm for transforming the current triangulation to the so-defined

optimum triangulation devised. In practice, an algorithm capable of constructing the global opti-

mum may be difficult to formulate, and local optima, or improvements from an initial mesh are

often produced.

2.2.1 Two-Dimensional Edge-Swapping

A method for transforming a 2D triangulation into another 2D triangulation is given by the edge-

swapping procedure of Lawson [18]. The algorithm is based on the fact that there are at most two

ways of triangulating a set of four points, as shown in Figure 6. For each pair of triangles in the

mesh which forms a convex quadrilateral, the original triangulation is compared to the alternative

triangulation obtained by swapping the position of the internal diagonal, as shown in Figure 6. If the

alternative triangulation is found to better optinlize the triangulation criterion, then the diagonal is

swapped. By iteralive application of this simple diagonal swapping primitive over the entire mesh.

the triangulation is eventually transformed into a more optimal triangulation, as defined by the

criterion. In [19] it is proven that any given 2D triangulation may be recovered from any initial 2I)

triangulation through repeated application of the diagonal-swapping primitive, although a general

algorithm for achieving this is not given. In general, it is found that a straight-forward application

of the edge-swapping procedure gets stuck in local optima, and is often incapable of t)roducing the

global optimum mesh.



Figure 6: Two possibleconfigurationsfor thediagonalof a convex pair of triangles in the

edge-swapping algorithm.

Furthermore, depending on tile order in which tile edges are swapped, different local optima may

be achieved. A notable exception is the construction of a max-rain or Delaunay triangulation. It

can be shown that repeated application of the edge-swapping technique based on maximizing the

minimum angle always converges to the globally optimum mesh, which is the Delaunay triangula-

tion, regardless of the initial mesh, and the order in which the edges are swapped. The complexity

of this procedure is O(NlogN), where N represents the number of vertices.

The globally optimum min-max triangulation, on the other hand, is not generally attainable

with this algorithm. A more sophisticated technique, known as the edge-cutting algorithm [20], is

capable of transforming any triangulation into the globally optimum min-max triangulation. The

algorithm may be interpreted as a generalization of the edge-swapping procedure. The first step

consists of locating the maximum angle in the current triangulation. Let prq be the triangle which

contains this maximum angle, which is situated at point p, as depicted in Figure 7.

$. s- A

P q s"

Figure 7: Illustration of the edge-cutting algorithm for constructing rain-max triangula-
tions.

In a.n attempt to reduce this angle, a. new point s is chosen, and the edge ps is drawn. The first

candidate for the point s is the point of the neighboring triangle rsq. If the two angles at q and r

are both smaller than the original angle at p, then the swap is successful, and the procedure may

be continued by searching for the next largest angle in the mesh. However, if the angles at q and r

are both larger than the original angle at p, no improvements are possible. In the event the angle

at q is larger, but the angle at r is smaller than the original angle at p, it can be shown that the

optimum new edge must intersect the edge rs. Thus we choose a new point s t in the neighboring

triangle of rsq. This procedure may be applied recursively to the neighbors of these neighbors, until

a suitable point is found, perhaps several neighbor distances away. The edge pst is then inserted

into the triangulation, and all edges which intersect pJ are removed, as shown in Figure 7. This

defines two empty polygons, which are then retriangulated. This is achieved by iteratively defining

consecutive vertices of each polygon boundary which form a triangle with all angles smaller than

the maximunl angle of the original triangulation.



Tile insertionof edgessuchas ps', which may intersect many existing edges, involves addi-

tional non-local information which enat)]es the algorithm to avoid getting stuck in local optima.
However, tile complexity of the edge-cutting algorithm is O(N21ogN). and no three-dimensional

extensions have been reported. These are tile probable reasons why this algorithm has seldom t)een

implemented for mesh generation applications.

2.2.2 Three-Dimensional Edge-Face Swapping

Three-dimensional tetrahedralization algorithms based on simple edge-face swapping primitives are

also possible. These primitives are based on the fact that, in d dimensions, d + 2 points may be

triangulated in at most two ways. as stated by' Lawson [21]. Thus. in three dimensions, a set

of five points may be triangulaled in at most two manners. Depending on the configuration of

these five points, either a unique triangulation exists, in which case the configuration is called

non-swappable, or two different triangulations are possible, in which case swapping between the set

of two constructs is possible. In general, the triangulation of five points in three dimensions may

result in 2, 3, or 4 tetrahedra, as shown in Figure 8.

d

a
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(a) (b) (b)

Figure 8: Possible tetrahedralizations of a set of 5 points in three dimensions (neglecting
degenerate cases.

This is in contrast to the two-dimensional case, where the number of triangles and edges are identical

for all possible triangulations of a given point-set, tIowever, the triangulation of three-dimensional

point-sets no longer represents a planar graph, and Euler's formula, no longer relates the number

of cells to the number of vertices [22]. Thus, various triangulations of the same point-set in 3D

can be expected t.o contain different numbers of cells, faces, and edges, and the face-edge swapping
primitives can be expected to modify these numbers.

In the case where five vertices are triangulated with four tetrahedra, (i.e., case (a) of Figure 8).

one of the five points is interior to the convex hull of the other four points, and no other triangulation

of this configuration is possible. This is a non-swappable configuration. In the case where the five

vertices are triangulated with two tetrahedra, (i.e., case (b) of Figure 8), the configuration is

swappable provided it is convex. A sufficient, condition for convexity is that. the line de intersect

the face abe in Figure S (b). If this is the case, then the two-tetrahedron configuration of Figure

(b) may be swapped into the three-tetrahedron configuration of Figure 8 (c) by removing face abc
and inserting the edge de (and thus faces ade, bde, cde). If the initial two-tetrahedron configuration

is non-convex, then it. is non-swappable. (In this case, it corresponds to the configuration in Figure
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8 (c), whereoneof the tetrahedrais missing). Similarly,in the casewheretile five verticesare
triangulatedwith three tetrahedra,as in Figure 8 (c), the configurationis swappableinto the
two-tetrahedronconfigurationof Figure8 (b), providedit is convex.To determineif the three-
tetrahedronconfigurationis convex,the convexitytestmaybeapplieddirectly to the anticipated
two-tetrahedronswappedconfiguration,whichyieldsthe sameresult. A completealgorittun for
transformingthree-dinmnsionaltriangulationsmaybegivenasfollows:

Step 1: Tagall meshfacesascandidatesfor swapping.
Step 2: Choosea pair of neighboringtetrahedrain the meshwhichsharea candidateface. This
definesfivevertices,threeof whichformthefacecommonto bothtetrahedra,andtwootherswhich
form theendpointsof thetwo tetrahedra.
Step 3: By searchingthroughneighboringtetrahedra,locateall otherelementswhichcontainfour
of the fivevertices.
Step 4: If the numberof elementsis four, theconfigurationis non-swappable.Goto step8.
Step 5: Checkfor convexity.If the configurationis non-convex,go to step8.
Step 6: Comparethe swappedconfigurationwith theoriginalconfiguration.Choosethe configu-
ration which"improves"the triangulationbasedon thegivencriterion.
Step 7: Tag the swappedfacesasoptimal, and the neighboringfacesasfuture candidatesfor
swappiilg.
Step 8: If future candidatesfor swappingexist,goto step2, elseend.

As in the two-dimensionalcase,theselocal transformationtechniquesmost often terminatein
localoptima,with the resultthat the globaloptimumtriangulationfor a givencriterionis usually
not achieved.While convergenceto the globallyoptimummax-rainor Delaunaytriangulationis
assuredin two dimensions,a similar result doesnot hold in threedimensions.In fact, the max-
rain and Delaunaytriangulationare not equivalentin threedimensions,and three-dimensional
Delaunaytriangulationsmust be characterizedby the empty-circumsphereproperty. Usingthe
empty-circumspheretestasa measureof optimality,Joe[23]hasshownthat local transformations
of an arbitrary triangulationarenot guaranteedto convergeto the Delaunaytriangulations.Only
underspecialconditions,suchastheadditionof a newvertexto anexistingDelaunaytriangulation
followingthe Green-Sibsonalgorithm,canthe applicationof local transformationsbeguaranteed
to convergeto the Delaunaytriangulation[23,24,25].

3 Practical Mesh Generation Algorithms

The algorithms described in tile previous section can be used to triangulate an existing set of

points, or to modify an existing triangulation. As such, they do not constitute mesh generation

techniques, but rather form basic building blocks, which can be used in conjunction with other

techniques to devise mesh generation strategies. In general, the generation of unstructured meshes

involves tile creation of both tile mesh points and their connectivity. This can be performed either

sequentially (pre-generation of mesh points, followed by a triangulation phase), or simultaneously

using an advancing-front technique, or a Steiner triangulation technique. (Steiner triangulations

refer to the insertion of additional points into an existing triangulation in order to improve the

quality of the triangulation.) The problem of mesh generation includes several well defined phases
which can be summarized as follows:

• Definition of boundaries of physical domain.

• Definition of element-size distribution as a function of spatial location (element shape distri-

bution is also required in the case of stretched meshes).
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• Generationof boundaryconformingmeshusinga suitableapproach.

* Optional mesh post-processing to improve element quality.

The boundaries of tile physical domain are usually defined through some CAD-type data-base,

which most often involves the use of piecewise spline curves in 2D. and assemblies of trimmed

(i.e., possibly intersecting) spline surface patches ill 3D. This initial boundary description must be

discretized as a set of line segments in 2D or a collection of planar faces in 3D, for mesh generation

purposes. This may be achieved prior to, or simultaneously with, the construction of the mesh. The

mesh generation procedure must be capable of guaranteeing boundary integrity: in two dimensions

this corresponds to generating triangulations which contain the subset of edges which define tile

domain boundaries (c.f. Figure 9),

Figure 9: Illustration of non-boundary conforming Delaunay triangulation for a simple
airfoil geometry.

while in three dimensions this corresponds to generating tetrahedralizations which contain the

subset of triangular faces which define the discretized boundary surfaces. The prol)lem of matching

a prescribed surface triangulation ill the construction of a three-dimensional volume grid can be

considerably involved. A slightly less stringent, approach to three dimensional boundary integrity is

that of generating a tetrahedralization which contains a possibly arbitrary boundary triangulation

which nevertheless does not violate the boundary surface integrity i.e. a surface triangulation which

does not intersect or cut through tile original boundary surface definition. Boundary integrity is

ext, remely important in mesh generation, for if the boundary surfaces cannot be recovered in the

nlesh, no nunlerical simulation is possible.

The definition of the element-size distribution may be accomplished either implicitly or ex-

plicitly. An implicit definition may involve inferring a value for the element-size in tile interior

of the mesh from the boundary discretization (i.e., by interpolation from the closest boundaries).

Another possibility is tile use of an analytic mapping function for generating sets of points with

desired spacings (i.e.. the use of structured O- or C-meshes for generating point sets) which are

subsequently triangulated. Explicit definitions of the element-size distribution involve the con-

struction of a function .s = f(.r,y,z) valid over the entire physical domain. This flmction may be

constructed analytically, or using a small set of discrete sources such as:

s = E s_,. 1+ --
k=l \ _k

(_)

where the summation is over all N sources, and r(x) denotes the position vector. The source

parameters s_. and rk represent the prescribed element size at the source, and the location of the

source, and/_k as well as "tk define the relative region of influence of the source.
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Alternatively,a backgroundgrid maybeemployed,whereat eachvertexa valueof the ele-
mentsizeis defined,and valuesin betweenverticesareobtainedby linear interpolation. These
backgroundmeshesmay beunstructured[26,27] (triangular,tetrahedral),cartesian [2g], or even

quadtree-based [29]. In practice, an effective approach is to construct an (elliptic) partial differen-

tial equation with the aid of source terms defined in a similar manner to those of equation ( 1 ), and

to solve this equation on the supporting background grid. The source terms can be prescribed in-

teractively, and correspond to prescribed mesh spacings at these physical locations. This approach
is particularly attractive, since the elliptic construction ensures a smooth element-size distribution

function, which is desirable for the generation of high quality meshes.

While mesh quality is usually defined somewhat heuristically, this usually entails the notion of

well shaped elements with small changes of element size between neighboring elements. Regardless

of the triangulation scheme employed (Delaunay, rain-max, etc...) it is now well known that accept-

able mesh quality cannot be achieved by optimizing mesh connectivity alone, but is necessarily the

result of a close matching between the mesh-point distribution and the mesh connectivity employed

in the construction of the mesh. (This is even more important in the case of stretched or anisotropic

meshes). Post-processing techniques may be employed for improving mesh quality. These often in-

clude minor redistribution of the mesh points through Laplacian-type smoothing techniques, often

followed by reconfiguration of the mesh connectivity. While these techniques are often successful in

improving grid quality by removing minor irregularities, they seldom adequately correct for serious

deficiencies in grid quality. Thus the ability to generate a high quality mesh from the outset is of

the utmost importance. Finally, mesh generation procedures must be robust. This not only means

that they must use proven constructs and exact algorithms, but they must be designed to avoid

and/or deal with ambiguous situations which typically arise in computational geometry problems.

The use of exact arithmetic [30] is perhaps the best approach to resolving such issues.

3.1 Quad/Octree Based Mesh Generation

One of the earliest and simplest methods for generating unstructured meshes involves the use of

quad and octrees in two and three dimensions respectively. Considering a two-dimensional example

for simplicity, an initial quad is formed which is large enough to cover the entire domain. Assuming

a mesh element-size distribution function exists, the quadtree is recursively subdivided until all

leaf quads are no larger than the local value of the element-size distribution function. If this

flmction is only defined on the domain boundaries, the quadtree may be initially subdivided along

the boundaries. Subdivision in the domain interior can then proceed by ensuring that jumps in

the sizes of neighboring leaf elements never exceeds 2:1. Triangular elements can be generated

by forced subdivision of the quad elements [31], or by using the quadtree vertices in a. Delaunay

point-insertion algorithm [32]. At the physical boundaries, the quadtree must be made boundary

conforming. This is usually accomplished by warping the mesh, i.e., displacing the closest quadtree

vertices to coincide with the boundary curve. Quad/octree methods are relatively simple and
efficient. Their main deficiencies relate to the quality of the mesh near boundaries due to the

warping procedure.

3.2 Advancing-Front Methods

Advancing-front methods involve the simultaneous generation of mesh points and their connectivity.

The idea is to build the mesh element by element, adding new elements to previously generated

elements, thus sweeping out a front across the entire domain. They usually rely on an explicitly

defined element-size distribution function, which is most often constructed using a background grid
[26.27, 33].
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Advancing-fronttechniquesbeginwith adiscretizationof tiledomainboundariesasase!of edges
in two dimensions.This is accomplishedby placingpoints alongthe boundarycurves governed

by the local values of the element-size distribution function, as shown in Figure 10. These edges
form the initial front which is to be advanced out into the field. A particular edge of this front is

selected, and a new triangle is formed with this edge as its base, by joining the two ends of tile

current edge either to a newly created point, or to an existing point on the front. The current

edge is then removed from the front, since it is now obscured by the new triangle. Similarly, the

remaining two edges of the new triangle are either assigned to the front or removed from the front,

depending on their visibility, as shown in Figure 11.

Figure 10: Initial boundary discretization for the advancing-front method.

The front thus constitutes a stack (or priority queue), and edges are continuously added to. or

removed from, the stack. The process terminates when the stack is empty, i.e., when all fronts

have merged upon each other and the domain is entirely covered.
The selection of the next edge in the front may be based on various criteria. A good strategy

is to always choose the smallest edge in the front, thus ensuring the front grows from regions of

small cells towards regions of large cells. This has been found to yield smooth high-quality element

distributions. Such a strategy can easily be implemented by encoding the front as a heap-list of

edges, with the edge-length as the heap ordering key [3].

• - ............... 6 "'I" I

Figure 11: Generation of new triangle using new point (a), or existing front point (b), in

advancing-front method.

One of the critical features of such methods is the placement of new points. Upon generating a

new triangle, a new point is first placed at a position which is determined to result in an optimal

size and shape triangle i.e., along the median of the front edge, at a distance defined by the local
value of the element-size distribution function, as shown in Figure 12. The triangle generated with

this new point may result in a cross-over with other front edges, and thus may be rejected. This is

determined by computing possible intersections with "nearby" front edges. Alternately. an existing
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point on tile front maycoincidentallybe locatedverycloseto the newpoint, andthus shouldbe
employedasthe formingpoint for the newtriangle,to avoidthe appearanceof a trianglewith a
very smalledgeat somelater stage.Thus, all front pointswithin a certaindistanceof the new
point mustbe located.This involvesthe determinationof anappropriatelengthscalefor defining
the searchregion.A typical exampleof a lengthscaleandsearchregionoftenemployedis shown
in Figure 12. Thefinal acceptedtrianglewill be the triangle formedfrom the currentfront edge
and the newpoint, or oneof the "nearby"front points,whichdoesnot intersectany front edges,
andbestconformsto the localelement-sizedistributionfunction.

Figure 12: Placement of new point

in advancing-front method.

Figure 13: Possible failure of

advancing-front method for merging
fronts of dissimilar sizes.

The determination of the set of "nearby" front points involves a proximity search which is

usually implemented using a quadtree data-structure [4]. Titus, a quadtree based on the front

points must be maintained dynamically, with points inserted and deleted as the front advances.

The front is thus simultaneously represented as a heap and a quadtree.

The space requirements for such an algorithm are lower than may be expected. Since this

is essentially a greedy triangulation [2], i.e., formed elements are never subsequently modified,

all points, edges and triangles which lie behind the front need no longer be considered in the

generation process. Thus the only active portion of the data is the front. Since a front has one

lower dimension than the domain to be discretized, the required space for such an algorithm in

two dimensions is O(v_'), where N is the final number of grid points generated. Since N point s

are added sequentially, the complexity is at most O(Nv/N). However, by employing sophisticated

searching techniques such as spatial quad-trees, this complexity is easily lowered to O(Nlogv_)

which is asymptotically equivalent to O(NlogN). Optimal space usage has not in general been

achieved, due to the difficulty in continuously dumping out generated elements. However, restart

capabilities are easily implemented [34, 29], which can greatly reduce the required working size for

a large mesh generation job.

One of the advantages of such an approach is the automatic point placement strategy, which

generally results in high-quality elements throughout most of the flow-field, due to the optimum

positioning of these new points. Additionally, all real operations performed (such as intersection

checking) are of a local nature; i.e., intersection checks are performed with neighboring edges of

similar length, thus reducing the chances for round-off error induced failure. Finally, boundary

integrity is guaranteed, since the boundary discretization constitutes the initial condition.

The disadvantages of advancing-front techniques mainly relate to their efficiency. The inter-

section checking phase is a rather brute-force technique for ensuring the acceptability of a new
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triangle, which is relativelyexpensive.Additionally, for eachgeueratedtriangle, the quad-tree
data-structuremust betraversedfromtop to bottom(O(logN) steps)in orderto locate"nearby"
point.sandedges.Anothercontributingfactoris thefact that advancing-fronttechniquesconstruct
the meshonetriangleat a time. Sincein two dimensionsthereareasymptoticallytwiceasmany
trianglesaspoints,a moreefficientstrategywouldbe to construct the mesh one point at a time.

Thus, each time a new point is generated, efficiency could be gained by determining all the potential

triangles which join this new point to tile existing front with a single tra.versal of the quad-tree

data-structure. In three dimensions, the savings are even greater, since there exists on average 5

to 6 times more tetrahedra than vertices.

Finally, even though advancing-front techniques rely only on local operations, they may still

suffer from robustness problems. Central to the issue of determining acceptable triangles and "'best"

points, is the determination of a local length scale which defines the region of "'nearby" points

and edges. This length scale is generally obtained from the field function (which may employ a

background grid). In the case of two merging fronts, if the field function varies rapidly over the

region between the merging fronts, the relative sizes of the edges on one front may be much larger

than those on tim other front. If a sea.rch is initiated from the front with the smaller length scale,

the region of "nearby" edges may not contain the appropriate edges and points of the other front,

and failure will occur, as shown in Figure 13. Thus, the success of the advancing-front technique

relies on the existence of a sinoothly varying field function.

3.3 Delaunay Point-Insertion Methods

Delaunay-based methods offer the possibility of constructing mesh generation strategies based

on proven computational-geometry algorithms (although this does not in itself guarantee a more

efficient/robust overall approach).

Some of the earliest Delaunay-based mesh generation strategies relied on predetermined mesh-

point sets [8, 7, 35, 36]. For multi-component geometries, each component represents a simple

configuration which can be fitted locally with a simple structured mesh (i.e.. for example using

a structured O-mesh about each element of a multi-element airfoil. By constructing a set of

overlapping structured meshes in this manner, and discarding the connectivity of these meshes, as

well as the points which fall outside of the physical domain, a set of points is obtained which may be

used a.s the basis for a Delaunay triangulation mesh generation strategy, using the Bowyer/Watson

or Green-Sibson algorithms.

In one particular approach [8, 3.5], an initial Delaunay mesh is constructed by joining one of the

inner boundary points to all of the outer boundary points in a hub and spoke type arrangement.

The inner boundary points are then inserted into the triangulation using the Bowyer/Watson algo-

rithm. After all inner bonndary t)oints are inserted, a. check for boundary integrity is performed. If

boundary violations are encountered, additional boundary mesh-points can be inserted to remedy

tlle situation. Once boundary integrity has been recovered, triangles exterior to tim domain are

removed, thus effectively freezing all boundary defining edges, and all interior points are inserted

and triangulated using the Bowyer/Watson algorithm. Due to the overlapping mesll construction

of the point-set, coincidentally close inesh points may be produced, and mesh smoothing is em-

ployed as a post-processing operation in order to relieve effects caused by local irregularities in tim

final mesh spacing, as seen in Figure 14. Mesh-point filtering techniques may also been employed

to restore smooth mesh-point distributions [37]. These techniques have also been employed for

ttlree-dimensional mesh generation about aircraft-type configurations by Baker [7, 38]. Although

predetermined mesh-point set techniques have been very successful for certain classes of geome-

tries, the simultaneous mesh-point generation and triangulation techniques embodied in Steiner

triangulations offer improved flexibility and automation for arbitrary geometries. A Steiner t.ri-

angulation is a triangulation whose additional points are inserted in order to improve the quality
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of the triangulation. Assuming an initial triangulation and an element-size distribution flmction

exist, the triangulation can be incrementally modified by continually inserting new points until the

final mesh closely matches the prescribed element-size distribution function in all regions of the

domain. A particularly effective strategy is to insert the new mesh points at the circumcenters of

the triangles which are flagged for improvement [39, 40, 41, 9, 25].

i

Figure 14: Delaunay triangulation of mesh-point distribution generated from overlapping

structured meshes, before and after application of smoothing.

This strategy can be proved to result in triangulations where the angles are all bounded between

30 ° and 120% neglecting boundary effects [16, 42]. This result is a consequence of the fact that the

circumcenter, where the new point is placed, is equidistant from the three vertices of its forming

triangle, which represent the closest points to the new point, since the circle is necessarily empty by

the Delaunay criterion. An effective mesh generation strategy using this approach can be formulated
as follows:

Step 1: Construct an element-size distribution function s = f(x,y, z).

Step 2: Discretize all boundary curves based on the above function.

Step 3: Construct an initial triangulation which covers the entire domain (usually by forced

triangulation of a large quadrilateral in 2D or hexahedron in 3D).

Step 4: Insert all the boundary points into the triangulation using the Bowyer/Watson or Green-

Sibson algorithm.

Step 5: Construct a heap-list of all triangles in the mesh which are larger than the local value

specified by the element-size distribution function (usually all existing triangles at this initial stage);

the heap-list is ordered by some measure of triangle size (i.e.. circumradius) or quality (maximum

angle).

Step 6: Pull the first triangle off the top of the heap-list, insert a new point at its circumcenter and

retriangula.te using the Bowyer/Watson or Green-Sibson algorithm. For each of the newly formed

triangles, which are larger than the local vatue specified by the element-size distribution flmction,

insert them into the heap-list.

Step 7: If the heap-list is empty, stop, else go to step 6.

Step 8: Recover the boundary integrity.

The heap-list empties out when the triangulation converges to the element-size distribution pre-

scribed by the function s = f(z.9, z). This method results in a very efficient mesh generation
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technique.Sincetile identity of theoriginatingtrianglefor thecircumcenterpoint-insertionopera-
tion is initially known,thesearchfor the containingtrianglein the Delaunayalgorithmis initiated
with this triangle. In mostcases,this correspondsto thecontainingtriangle,andin all othercases.
the containing triangle is only several neighbors away. Thus, the union of intersected triangles

in Watson's algorithm can usually be found very rapidly, in constant time. Since the heap-list

operations (insert/delete) can all be performed in O(logN) time, the space and time requirements

of this algorithm are 0(NlogN). In practice, this metho<l has produced some of the most efficient

mesh generation codes available today, capable of generating 1 million three-dimensional elements

per hour on present-day workstations [43].

In the above description of tile algorithm, the boundary recovery procedure is performed as a

final step, after all mesh points have been inserted. In practice, this procedure may be performed

either in the final stages of the algorithm, or earlier on, just after the boundary points have been

inserted, i.e., between steps 4 and 5. Recovering the boundary integrity in the final stages of the

algorithm enables tile boundaries to be neglected and the domain to be treated as convex, during

the point-insertion phase. This permits a straight-forward application of tile Delaunay insertion

algorithm at this stage. Furthermore, mesh quality is much higher at the end of the point-insertion

procedure, which may result in a more robust boundary recovery phase. On the other hand, new

points may be introduced arbitrarily close to the eventual boundary surfaces, during the point-

insertion process, which may result in a poor quality mesh after the boundary recovery operation.

If the boundary recovery is performed just. after the insertion of the boundary points, interior

Inesh points near the boundary may be positioned more optimally (see for example section 3.5).

However, this requires boundary integrity be maintained subsequently throughout tile remainder

of the grid generation process, and implies the application of Delaunay point-insertion algorithms

in non-convex domains for step 6. In two dimensions, the existence of a constrained Delaunay

triangulation guarantees that the point-insertion algorithms can be extended by terminating the

search for intersected triangles ill tile given direction, when a boundary is encountered. In three

dimensions, although similar techniques have been employed, there is no guarantee that a valid tri-

angulation will result, since no three-dimensional definition of a constrained Delaunay triangulation
is available.

One way of recovering the boundary integrity, either a.t the end of the mesh generation process.

or after the insertion and triangulation of the prescribed boundary points, is to insert a sufficient

number of additional boundary points until the Delaunay triangulation conforms to the boundary.

A more elegant approach consists of modifying the existing Delaunay triangulation using the edge

swapping (in 2D) and face-edge swapping (in 3D) primitives discussed in section 2.2 to produce

a locally modified triangulation which conforms to the boundary. This approach also offers tile

possibility of matching exactly a predetermined boundary discretization. In two dimensions, ca, h

edge of the prescribed boundary discretization is searched for. in the l)elaunay mesh. If one of

these edges is not found, but the two endpoints of the edge are located in neighboring triangles,

then a simple edge swap, as depicted in Figure 6, is sufficient, to recover the missing edge. In the

event these endpoints are located in non-neighboring triangles, then all triangles which the missing

edge intersects are first located. These triangles are all removed, and the missing edge is inserted.

as shown in Figure 15. This creates two polygons, on either side of the new edge, which are then

triangulated, using, for example, the Tanemura-Merriam algorithm.

The situation in three dimensions is somewhat more complex. The procedure is usually divided

into two phases for a prescribed boundary surface triangulation: firstly the recovery of the boundary

edges, and secondly the recovery of the boundary faces. The face-edge swapping primit ives of section

2.2 are utilized to tra.nsform the Delaunay triangulation into one which contains the I)oundary

edges and faces. However, contrary to tile two-dimensional case, the insertion of additional points

is often required to enable the completion of the boundary recovery procedure in three dilnensions.
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Weatherill [40] has categorized all possible boundary edge and face intersection types, and lists

rules for inserting new points to enable recovery of these boundary elements. Generally speaking.

he advocates the creation of new points on tile surface, at the point of intersection with tile existing

grid element. Once all boundary edges and faces have been recovered, tile new surface points may

be removed in an attempt to recover the original surface discretization, ttowever, in some cases.

tile removal of these point may result, in cavities which cannot be re-tetrahedralized.

Figure 15: Illustration of the insertion of a missing boundary edge into an existing De-

launay triangulation, and the resulting empty polygons which must be retriangulated.

In [9], a similar method which introduces new points off the surface is developed, thus permitting

the recovery of the original surface discretization.

The mesh-point distribution produced by the circumcenter point-placement strategies, while

certainly acceptable, are somewhat irregular and lack the high degree of smoothness produced

by the advancing-front method. This is perhaps due to the fact that Steiner triangulations are

top-down approaches, which seek to improve existing triangulations through refinement. A more

serious difficulty with Delaunay point-insertion methods relates to robustness problems due to

round-off error. Particularly in the initial phases, when the boundary points are inserted, highly

distorted triangular/tetrahedral elements are formed. The finite precision real arithmetic utilized

to compute all quantities (i.e., cell volume, circumcenter, etc.) may lead to failure of the algorithm

simply due to insufficient accuracy (even in 64 bit arithmetic). One remedy is to alter the order

in which the points are inserted, or to employ auxiliary (possibly temporary) points to avoid the

creation of highly skewed elements. However, this may also have the effect of modifying the resulting

triangulation. Ultimately, the best technique for ensuring robustness is to resort to infinite precision

arithmetic using integer progra.mnfing techniques [30], perhaps in conlbination with some of the

above strategies.

3.4 Advancing-Front Delaunay Triangulation

In an effort to Mleviate some of the drawbacks of point-insertion Delaunay triangulation methods, an

advancing-front Delaunay triangulation algorithm was recently developed by the author [29]. This

method enjoys the smooth point distribution and guaranteed boundary integrity of the traditional

advancing-front methods, while using the well founded principles of Delaunay triangulation to

replace the heuristics present in the reconnection phase of traditional advancing-front methods.
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Robustness without the use of high accuracy arithmetic is assured by only constructing triangular

elements wltich are acceptable ill size and shape, as determined by the background spacing function,

i.e., the highly skewed triangles which appear temporarily in the point-insertion methods are never
formed.

A background spacing function s = f(x,y) is used to determine the maximum permissible

circumradius p of a triangle as a function of spatial location. Each time a new point is added ahead

of the front, it is desired to construct all Delaunay triangles which contain this new point, but which

do not violate the local circumradius bound. Triangles which violate the local circumradius bound

should not be constructed, even temporarily, for this may require non-local operations and the

possibility of round-off induced error. One method of constructing these triangles is simply to join

the new point to every possible pair of points in the grid and preserve each potential triangle which

does not violate the Delaunay criterion and the circumradius bound. A more efficient techni(lue

is to determine a subset of the grid points which is sufficient for locating all acceptable triangles.

Such a subset can be formed by considering all front points which are less than 2p away from the

new point. The advancing-front Delaunay triangulation algorithm for fixed point sets (Taneinura-

Merriam) described in section 2.1.3 [14, 15] can then be employed to construct the Delaunay

triangles between these front points and the new point. As in the traditional advancing-front

algorithm, it is possible that a new triangle may be formed from the current front edge with an

existing front point. Such cases are automatically detected by the Tanemura-Merriam algorithm,

and the new point, is rejected. Finally, when a new point is introduced, it is possible that it int.ersecls

circumcircles of existing triangles. If this is the case, these triangles must be deleted prior t.o the

formation of new triangles, since they are in violation of the Delaunay criterion. The method is

set. up similarly to the traditional advancing-front procedure. A background sl)acing function is
defined, and the boundaries are discretized and constitute the initial front. The basic algorithm

can be suminarized as follows:

Step 1: Construct the original front as a set of boundary edges.

Step 2: Choose a particular edge from the front, according to some criteria such as minimum edge

length.

Step 3: Locate all front points which are less than 2p away from either end point of this edge,

where p is the local circumradius bound determined from the field function.

Step 4: Use the Tanenmra-Merriam algorithm to determine the Delaunay triangle formed between

this edge and the set of candidate points, if such a triangle exists.

Step 5: If this triangle exists and is acceptable (circumradius smaller than p), form a new triangle,

update the front, and proceed to step 12. Otherwise create a new point at the appropriate location.

Step 6: Determine all front triangles whose circumcircles are intersected by the new point.

Step 7: Using a neighbor search initiated at the intersected front triangles, locate all interior

triangles whose circumcircles are intersected by the new point.

Step 8: Remove all such triangles and update the front. Any new front points which result from

this operation are added to the list of "close" points.
Step 9: If the circumradius of any of the new intersected triangles is larger than the previously

determined maxilnum permissible value p, replace the old value by this new maximum, and locate

any additional front points which are less than 2p away from the new point.

Step 10: Form all possible Delaunay triangles which contain the new point and two other points

in the list of "close" points, and which do not. violate the local circumradius bound. Such triangles

are found using the Tanemura-Merriam algorithm.

Step 11: Add these triangles to the mesh and update the front.

Step 12: If the front queue is empty, stop, otherwise go to step 2.
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Asin previousadvancing-frontalgorithms,thefront isstoredasaheap-listin order to facilitate

the choice in step 2. A front-based quadtree is also used to perform tile search for "close" points in

step 3. A second quadtree is also employed in the search for intersected front triangle circumcircles.

(The construction of quadtrees for geometric entities other than points, such as circles, is described

in [4]).

In most cases when a new point is inserted ahead of the front, no intersected circumcircles are

detected, and few if any other front points are within the critical 2p distance of the new point, thus

the construction of new triangles is quite simple. When fronts merge upon each other, the situation

becomes more complex. Triangle circumcircles from the opposing front are usually intersected. This

alerts the front being advanced to tile proximity of the neighboring front and provides an extra

length scale (the circumradius of tile intersected triangle) which is utilized effectively in mending

the two fronts as shown in Figure 16.

Figure 16: Illustration of the use of the front triangle circumcircle to detect the proximity

of a front. (compare with the situation depicted in Figure 13).

The Delaunay construction naturally results in additional information which is essential for merging

two fronts of dissimilar length scales. This is precisely the information which is missing in the
traditional advancing-front algorithms, which are prone to failure when fronts of dissimilar scales

are encountered. Although a smoothly varying background flmction can reduce the likelihood of

having to merge dissimilar fronts, this cannot be guaranteed. The extra information inherent in

the Delaunay-based algorithm permits the merging of arbitrarily dissimilar fronts, thus increasing
robustness.

The space requirements and computational efficiency of the present algorithm lie in between

those of traditional advancing-front algorithms and the Bowyer/Watson algorithm for Delaunay tri-

angulation. As opposed to the advancing-front algorithms, the present approach does not represent

a true greedy algorithm [2], i.e., triangles behind the front may be subsequently modified. However,

the only such triangles which may be modified are those whose circumcircle extends ahead of the

front into the ungridded region into which new points are placed. Assuming a relatively smooth
distribution of elements behind the front, the number of such non-frozen elements is a constant

times the size of the front. Thus, we can expect a space requirement of O(v_), although the worst

case estimate is more likely O(N). On the other hand, it is a simple matter to create a restart

facility which dumps out the generated portion of the grid after a prescribed number of elements

have been produced, and reinitializes the generation process using the front of the previous mesh

as the initial condition. If no old elements behind the front are considered in the restart process,

the resulting mesh may contain regions of locally non-Delaunay triangles along the fronts present
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at each restart phase. If a true Delaunay triangulation is required, these regions may be converted

using the edge-swapping algorithm in a postprocessing phase.

The current algorithm exhibits a worst case complexity of O(N2), just as the Bowyer/X, Vatson

algorithm for Delaunay triangulation. This occurs when the circumcircles of all existing triangles

are intersected by each new point, or when all front points must be included ill the list of "nearby"

points which are candidates for forming a new element. However, for the smooth element and point

distributions which are sought in the context of mesh generation, the number of points within the

characteristic distance of a newly inserted point and the number of intersected triangles should

approach a constant. When the logN term from the quad-tree data-structures employed for the

search routines on the front is included, a complexity of O(NIogN) can be expected. This is

the same complexity exhibited by other advancing-front algorithms under the same assumptions.

However, the present algorithm can be expected to run significantly faster than other advancing-

front algorithms, since the mesh is generated one point at a time, rather than one triangle at a

time. In two dimensions, the differences may be small, especially since two length scales and thus

two searches on the front are required for robustness (an additional one for the intersected front

triangle circumcircles). However, in three dimensions where there are on tile average 5 to 6 times

more tetrahedra than vertices, the O(logN) cost of traversing the octree data-structures may be

amortized over all elements generated about each newly inserted mesh point.
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Figure 17: Illustration of advancing-front Delaunay triangulation procedure. (i) Quadtree

of initial boundary discretization. (ii) Grid at intermediate stage of generation. (iii) Final

generated mesh prior to the application of smoothing. (iii) Final smoothed mesh.
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Onthe otherhand,the presentalgorithmwill probablynot achievethe efficiencyexhibitedby
Delaunay-triangulationpoint-insertionmethods,due to the needto traversethe quad-tree data-

structures, which are not present in these other methods, and the need to consider a sufficient but

not necessary list of candidate points for triangulation at each point-insertion process. This cost, as

well as the increased coding complexity, is viewed as the price required for additional robustness. An

example of the mesh generation process using the advancing-front Delaunay triangulation algorithm

is depicted in Figure 17. The initial front quadtree is shown in the first part of the figure. Two copies

of this quadtree are kept. The first is static and forms the supporting structure for the background

spacing function. In order to evaluate this function at a given spatial location _ = f(x,y), the

quadtree is descended to the leaf quad which contains the particular (x, y) location, and the function

value is obtained by bilinear interpolation of the values at the four quad vertices. The second copy

of this quadtree is dynamic, and is advanced along with the front throughout the mesh generation

process. This quadtree is employed for the spatial searches required by the algorithm. The second

part of the figure illustrates an intermediate stage of the mesh generation process, while the final

mesh is depicted in the third part of tile figure, and the smoothed mesh ill the fourth part of

the figure. It is noteworthy that the final mesh generated in this fashion exhibits a very regular

distribution of elements, even before the application of post-processing techniques. (Compare this

with the first part of Figure 14, for example).

3.5 Advancing-Front Point-Insertion Methods

Another option for combining the advantages of Delaunay triangulation with those of advancing-

front techniques is to employ the point-insertion algorithms (e.g. Bowyer/Watson or Green-Sibson)

in conjunction with an advancing-front type point-placement strategy. The advantages of such

methods are the smooth point distributions associated with advancing-front methods, coupled

with the efficiency and ease of implementation of the Delaunay point-insertion methods. The

disadvantages are the same as those described for the circumcircle point-insertion methods of

section 3.3, i.e., the application of boundary recovery techniques, and possible robustness problems

associated with the use of finite-precision arithmetic, due to the presence of highly skewed elements

at intermediate stages of the mesh generation process. However, these methods are consideral)ly

simpler to implement than the algorithm of the previous section. They extend readily to three

dimensions, and can also be used to generate triangulations other than the Delaunay triangulation,

as will be shown. Such methods have been described by Rebay [44], and Mueller et al. [45], and

later taken up by Marcum et al. [43, 46]. Assuming an element-size distribution function has been

defined, and is used to control the maximum permissible circumradius of a triangle as a function of

spatial location, Rebay [44] begins by classifying all triangles of the initial triangulation as either

accepted, active, or waiting. An accepted triangle is one that satisfies the circnmradius-bound

defined by the field function, while a waiting triangle is one that does not. Active triangles are

waiting triangles which are neighbors of accepted triangles. Active triangles are the only triangles

considered for refinement. Thus, the set of edges which delilnits the border between accepted and

waiting triangles constitutes the front, and active triangles are simply triangles which have an

edge on the front. Mueller et al. [45] and Marcum [46] have devised point placement strategies

which mimic hyperbolic structured mesh generation techniques. At each stage, the entire front is

considered, and a new set of points is created ahead of the front, similarly to a new layer of points

in a structured hyperbolic mesh scheme. These points are then filtered, in order to remove points

which may be too close together, such as in concave regions of the front, and the filtered point-set is

inserted into the mesh sequentially, using the Delaunay point-insertion methods. A more traditional

technique for advancing the front by using a heap-list, which always chooses the smallest front-edge,

has also been found to work well. A particular implementation of these algorithms, as performed

by the author is given below:
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Step 1: Defineafield-spacingfunctionanddiscretizethe boundariesaccordingly.
Step 2: Createan initial triangulationwhichcoverstheentire domain(usingauxiliary points)
Step 3: Insert all boundarypointsinto the triangulationusinga Delaunaypoint-insertionalgo-
rithm (Bowyer/YVatsonor Green-Sibson).
Step 4: Recovertheboundaryintegrityusingedge-swappingtechniques(oredge-faceswappingin
3D)

Step 5: Flag all triangles outside of the physical domain as accepted, and all triangles inside the

domain which violate the local circumradius-bound as waiting (usually all initial triangles will be

in violation).

Step 6: The set of edges which delimits accepted and waiting triangles forms the current front

(which coincides with the boundaries at this stage). Construct a heap-list of these edges ordered

by smallest edge-length.

Step 7: Pick the smallest front edge from the top of the heap-list, and determine the position of

the new point ahead of tiffs edge, based on the local value of the field function.

Step 8: Insert this point into the triangulation using the Delaunay point-insertion algorithm.

Step 9: Reclassify newly formed triangles as accepted and waiting, based on the local circumradius

bound, and update the front accordingly.

Step 10: If the front is not empty, go to step 7, else stop.
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Figure 18: Illustration of point-placement strategy for advancing-front Delaunay point-
insertion method.

The point-placement strategy is illustrated in Figure 18. The new point is placed along the median

of the current front-edge, at a distance which results in a triangle of circumradius p, as prescribed

by the field function. The location of the new point along the median is limited at the lower end

by the intersection of the median with the inscribed circle of the current front edge, (since this

is the smallest possible circumcircle which can be formed with a triangle consisting of this edge

and a third point), and at the other extreme by the location of the circumcenter of the current

waiting triangle formed with this edge. This extreme corresponds to a cireumcenter point-insertion

strategy, as described in section 3.3, which ensures the new point will not fall coincidentally close

to an existing mesh point. Figure 19 illustrates the mesh generation process at an intermediate

stage for the same configuration shown in the previous section. The front is clearly visible, and the

identity of the accepted and waiting triangles is fairly evident. This algorithm uses the same point-

placement strategy as the algorithm of the previous section, and thus should yield the identical mesh

as the advancing-front Delaunay procedure of the previous section, provided the same background
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spacing function is specified (not tlle case in this example). The main difference between these two

algorithms is that, in the former case, the waiting triangles which are most often highly skewed, are

never formed, thus leaving an ungridded gap region between the fronts. This results ill the need to

employ quadtree data-structures to perform the search for nearby front, points and circumcircles.

In the present method, the domain is always entirely covered by a triangulation, which is utilized

in all efficient, manner for supporting all spatial searching operations (implenlented as neighl)or

walks).

Figure 19: Partially completed advancing-front Delaunay point-insertion mesh.

A notable feature of tile present methodology is that the boundary recovery procedure must

be performed immediately after the insertion of the boundary points, and cannot be performed at

the end of the mesh generation operation, after all interior points have been added, as discussed

in section 3.3. This is due to the fact that the boundary discretization constitutes the initial

front, the location of which is required to guide the placement of new points. Once the boundary

discretization has been recovered, it must be maintained throughout the insertion of all interior

mesh points. While ill two dimensions this is easily achieved by modifying the point-insertion

algorithms according to the principles of constrained Delaunay triangulations, the lack of any
such notion in three dimensions makes the situation more difficult. Indeed, tile initial mesh with

recovered boundaries in general will not represent a Delaunay triangulation, and may lead to failure

of the Delaunay-based point-insertion algorithms.

An alternative technique [25, 46] circumvents this issue. The approach is based on relaxing the

constraint that the final mesh be as close as possible to Delaunay, and relies on variants of the Green-

Sibson point-insertion algorithm. The basic mesh generation procedure is similar to that described

above, except that in step 8, a truncated Green-Sibson algorithm is employed to insert new field

points. The new point is inserted by joining it to the four vertices of its enclosing tetrahedron

(or five vertices of two neighboring tetrahedra in the event the point coincides with a face, with

a similar extension for a point coinciding with an edge), and then swapping faces and edges of

the newly formed and subsequently modified elements according to the in-circle criterion, until a

Delaunay mesh is recovered, or the process can no longer "improve" the mesh. Boundary integrity

is easily enforced in this manner, since face-edge swaps which alter the boundary discretization

are simply prohibited. While the Bowyer/Watson algorithm relies on the Delaunay property of

the mesh in order to guarantee the convexity of the reconstructed region and the validity of tile
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new triangulation, the Green-Sibsonalgorithmcanstill be employedwith initial constructions
other than Delaunaytriangulations. In suchcasesit reducesto a local optimization technique
whichattemptsto approximatethe Delaunaytriangulation.By modifyingthe face-edgeswapping
criterion, the algorithmcanbeemployedto constructother types of triangulations, such as rain-

max triangulations. (ttowever, forward as well as backward propagation of the swapl)ing tests

must be implemented in such cases as described in section 2.1.2). In fact, Delaunay triangulations

may not be the optimal construction for three-dimensional inesh generation problems, in spite of

all the elegant properties associated with such triangulations. Since it is possible to form a sliver

tetrahedron with vanishingly small volume for which the circumsphere is not excessively large ( i.e..

imagine four coplanar points on the sphere), Delaunay triangulations in three dimensions often
admit such ill-behaved elements. This suggests that min-max triangulations may t)e better suited

for three-dimensional grid generation purposes.
On the other hand, the use of Green-Sibson type point-insertion local-reconnection algorithms

for generating rain-max triangulations suffers from the inability to recover the globally optimum

rain-max triangulation. In fact, the algorithm typically gets caught very quickly in a local optimum

and results in poor quality meshes. A key feature which enables a closer approximation of the

global optimum and yields higher quality meshes, is the use of an intermediate Delaunay in-circle

swapping test, as demonstrated in [43, 46]. In this approach, each time a new point is inserted, the

surrounding faces and edges are first swapped according to the traditional Delaunay in-circle test,

and then re-swapped according to the rain-max criterion. The use of this intermediate pseudo-

Delaunay construction serves to broaden the range of influence of the new point, thus providing a

more global effect, and avoiding the local optima which typically plague the straight application of
the rain-max criterion.

4 Adaptive Meshing

Aside from the treatment of complex geometries, the second main advantage of unstructured meshes

is the ease with which solution-adaptive meshing may be implemented. Since no inherent structure

is assumed in the representation of unstructured meshes, mesh refinement and coarsening may be

performed arbitrarily in any region of the mesh. The principle idea of adaptive meshing is. of

course, to enable a higher accuracy solution at lower cost, through a more optimal distribution of

grid points for each computed solution. The entire procedure is akin to a control prol)lem, where

the output (the solution) drives the machinery which generates the solution itself. The basic steps

in an adaptive meshing solution strategy are:

• Computation of initial solution.

• Estimation of local error in solution.

• Modification of mesh according to estimated error values.

• Initialization of solution on adal)ted mesh.

• Resumption of numerical solution procedure.

A complete adaptive solution package must therefore include a flow solution module, an error

estimation technique, and a grid adaptation (refinement-derefinement) module, as well as an ac-

curate representation of the actual configuration geometry. Thus, the construction of an adaptive

solution methodology represents a large investment in software development, particularly in three

dimensions.
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The needto storegeometrydata is dictatedby the requirementsof placing new adaptively

introduced boundary points oll the curves or surfaces which define the original geometry, rather

than simply oil the coarse grid approximation to this geometry, as shown in Figure 20.

Figure 20: Illustration of fine and coarse grid discretizations of curved boundary.

The extraction and reduction of this data from its defining source (usually a CAD data-package)

may prove to be a difficult task, particularly for complex three-dimensional configurations. Another

possibility is to encode the geometry as a very fine set of points (finer than the highest expected

mesh resolution). This seemingly primitive technique may be making a comeback, particularly

with the availability of rapid high-resolution geometry scanning devices.

The actual mechanics for modifying the mesh, i,e., adding, removing, and displacing mesh

points, as well as reconnecting them, is usually the topic which receives the most elaboration in

adaptive meshing papers. It is also perhaps the best understood of all the required elements.

Most adaptive meshing techniques can be implemented as extensions or enhancements to known

mesh generation strategies. The formulation of an effective mesh refinement criterion, on the other

hand, is a difficult task which has not been adequately resolved to date. The main problem is

that an exact characterization of the error requires a knowledge of the solution itself, which is

obviously impractical. While finite-element error estimates have been developed for simple elliptic

problems, the difficulty is compounded for fluid dynamics problems by the fact that the governing

equations represent a coupled system of non-linear hyperbolic partial-differential equations. A true

characterization of the error would necessarily require information from all flow variables. Estimates

which rely on the smoothness properties of the solution break down in regions near discontinuities

such as at shocks. Furthermore, all error estimates rely on the fact that the computed solution

is asymptotically close to the exact solution. The non-linear and hyperbolic character of the

governing equations may, however, result in situations where this assumption does not hold, at.

least locally. Consider for example a separation bubble which only appears when certain upstream

flow features have been adequately resolved, or the diffusion of a wake profile due to inadequate

upstream resolution. In such cases, the downstream solution is in no way asymptotically close to

the exact solution in these regions.

The inadequacy of current error estimators, coupled with the fact that the computed solution

may be far removed from the exact solution, are the main reasons why adaptive meshing cannot be

utilized in lieu of mesh generation itself. In other words, the idea of initiating the calculation with

an extremely coarse grid (possibly just fine enough to resolve the essential geometry topology) and

relying on adaptive meshing to generate the final mesh, is impractical since many flow features will

never be captured on such a mesh. The generation of a suitable initial mesh, with good resolution

in regions of expected solution activity, is essential for good overall adaptive solution performance.
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4.1 Refinement Criteria

The most popularrefinementcriteria for fluid-flowproblemsareessentiallyheuristicallyderived
gradient-basedcriteria.,whichinvolvea singleor multiplephysicalflow variables.As all example,
thegradientof pressurecanbeusedto identifyinviscidflowfeatures,whilethe gradientof velocity
canbeusedto trackshearlayers.In actualfact, it is the undividedgradientwhich is employed:

or, discretely:

e = -- • h (2)
Ox

= Au (3)

The use of an undivided gradient ensures that the value of e, which should approximate tile error,
decreases as the mesh size is reduced. Since second-order methods, which are typically employed.

can represent linear solutions exactly, an undivided second difference may be expected to vield a

better refinement criteria:

0 2 It

_= --.17 (4)
Ox 2

Both first and second difference based refinement criteria have been tested and employed in the

literature. However, the use of first differences is more conservative (i.e., produces more refinement)

and is often found to work better in practice. Lohner [47] advocates the use of a non-dimensional

criterion which is designed to assign equal weight to weak as well as strong flow features. This

is achieved by forming the ratio of second and first derivatives. The refinement indicator can be

written as:

,9 2 t_

_ (5)
hi 0_Ox + oK

where _ represents some neighborhood average of the flow variable u, and o is a small parameter.

This extra term in the denonfinator acts as a "noise" filter which avoids triggering refinement in

regions of small solution oscillations. This type of refinement criterion has been used extensively

for two- and three-dimensional transient flow solutions involving shock waves.

An interesting study of the effectiveness of various refinement criteria for steady-state problems

can be found in the paper by Warren et al. [48]. The error levels in various adapted mesh solutions

using different refinement criteria were assessed by comparing the adapted mesh solutions to the

"exact" solution (i.e., a solution computed on a highly resolved, globally refined mesh). Their

experiments indicate that the modification of the undivided differences in equation (3) to include

a local mesh length-scale such as:

= A u • A x (6 )

produces a. more effective refinenlent criterion. This is partially due to the fact that while the simple

undivided difference form of equation (3) decreases in magnitude as the mesh is refined in smooth

regions of flow. it. remains approximately constant in the vicinity of shock waves, since the shock

wave profile steepens as the nlesh is refined, and the jumps remain almost constant, ttowever, even
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in regionsof smoothflow, the additionallengthscaleweightslargecellsmoreheavilythan small
cells,and drivesthe adaptationprocessclosertowardsglobalrefinement.The introductionof an
extra length scalethus producesa moreconservativecriterion (i.e.. resultsin morerefinement)
andthusgreaterreductionof theerror canbeexpected.This asymptotictendencytowardsglobal
refinementis actually tile behaviorwhich is desiredfor steady-stateproblems. While adaptive
meshingis typically thought of asa processthat refinesonly local regionsof the mesh,this is
characteristicof theinitial stagesofanadaptivemeshprocedure,wheretheappropriatedistribution
of meshresolutionis set up to matchthe solution. Oncethis hasbeenachieved,andthe error is
presumablyequipartitionedthroughoutthe domain,any increasein solutionaccuracycan only

come about from global refinement. Refinement criteria must therefore be able to reproduce this
behavior.

Although gradient-based refinement criteria have been employed successfully in computational

fluid dynamics, such techniques are not well founded and are far from optimal. The effectiveness

of a refinement criterion is measured in terms of accuracy delivered for the number of mesh points

required. In the above discussion, the more conservative gradient-based criteria are obviously the

most successful at reducing the solution error, but also result in excessive refinement, and are not

necessarily the most efficient. The construction of more optimal refinement criteria will require

the development of better error estimation techniques most likely through the use of some type of
extrapolation method [49].

4.2 Mesh Adaptation Techniques

Mesh adaptation may involve the addition of extra vertices, the removal of vertices, the redistri-

bution of existing vertices and the reconnection of mesh vertices. The character of the problem

to be solved dictates the requirements of the mesh adaptation strategy. For example, steady-state

problems usually involve a small number of adaptation phases as part of a lengthy solution process.

Therefore, relatively sophisticated (i.e.. more optimal) adaptation strategies can be employed, such

as, in the extreme case, complete mesh regeneration. Mesh refinement procedures are most impor-

tant here, while de-refinement has only a minor effect and can often be omitted for steady-state

cases. For transient problems, mesh adaptation must be performed every several time-steps, and

thus efficiency is much more important than optimality. Mesh refinement and de-refinement are

both essential for transient cases. Furthermore, the accuracy of interpolation from the original

mesh to the refined mesh affects the solution accuracy (unlike the steady-state case), and thus

accurate transfer schemes are required. These requirements have often lead to the use of simple
element subdivision schemes for transient flows.

For steady-state as well as transient problems, mesh adaptation strategies are generally based

on one of the previously discussed nlesh generation procedures, and can be implemented as an

extension of the originating procedure.

4.2.1 Delaunay Point-Insertion Based on Solution Gradients

The Bowyer/Watson and Green-Sibson algorithms described in section 2.1 enable the introduction

of new points in any regions of an existing mesh, and are thus natural candidates for mesh adap-

tation algorithms. A particular implementation of an adaptive mesh solution strategy using the

Bowyer/Watson algorithm performed by the author [50] is described below. Assuming an initial

Delaunay triangulation mesh has been constructed, the flow solution is computed on this mesh.

Using the undivided gradient of density as a refinement criterion (c.f. equation (3)), each edge of

the mesh is then examined and flagged for refinement if the difference of density along the edge

is larger than some threshold value, which is set proportional to the average of all density dif-

ferences taken over all mesh edges. This simple edge-based refinement strategy tends to produce

non-isotropic point distributions which triangulate poorly. Therefore, a more isotropic refinement
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strategy is desired. This is achieved by effecting a single loop over the mesh triangles and flagging

the remaining edges for refinement of ally triangle which has a single or two refined edges. Note that

this operation requires the use of a cell-to-edge data-structure, in ad(lition to the cell-to-node data-

structure employed by the Delaunay triangulation algorithm, and the edge-to-node data-structure

employed by the flow solution algorithm.

For each flagged edge, a new point is created at the midpoint of the edge. For boundary edges,

these points are repositioned onto the spline curve which defines the original geometry, as depicted

in Figure 20. The new points are put in a list, and then inserted and triangulated sequentially into

the mesh using the Bowyer/Watson algorithm. The new refined mesh is smoothed by ret)ositioning

the points according t.o a Laplacian filtering technique. The solution is then interpolated in a

piecewise linear manner from the original mesh to the new finer mesh (using the interpolation

operators constructed for the multigrid algorithm as described in the next chapter) and the flow is

solved on the new mesh. The entire procedure is repeated several times, until the desired accuracy

(or grid size) is attained.

Figure 21: Adaptively generated

mesh for NACA 0012 airfoil.

Figure 22: Adaptively generated

mesh for idealized four element airfoil

geometry.

Figure 21 illustrates the final mesh obtained by this procedure, after three adaptive refinement

passes, for the computation of transonic flow over a NACA 0012 airfoil. The flow features are

rather well defined in this case, and the various levels of refinement are evident in the final mesh.

Figure 22 illustrates a.n adaptive mesh obtained for the computation of inviscid subsonic flow over

a multi-element airfoil. Here, tile flow is smooth and features are not. well defined. The various

levels used to construct the adapted mesh are not as evident, and the procedure results in a smooth

variation of the mesh in most regions of the domain. This same procedure extends readily to three

dimensions. Figure 23 depicts an adapted tetrahedral mesh employed to compute the transonic

flow over an ()NERA M6 wing. This mesh contains a total of 173,412 points, and was obtained

through two applications of adaptive refinement. The double shock structure in the flow solution

is clearly reflected in the mesh refinement pattern.
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Figure 23: Adaptivelygeneratedmeshin threedimensionsfor ONERAM6 wing.

4.2.2 Extensions to Steiner Triangulation

Any mesh generation technique which relies oil the use of a background element-size distribution

function can be extended in a natural manner for adaptive meshing problems. Consider the Steiner

triangulation methods described in section 3.3, where new points are continually added to the mesh,

until elements which satisfy the background size-function are obtained. Once the flow solution has

been obtained on the initial mesh, the background function may be modified to reflect the result

of the application of a refinement criterion to this solution, (i.e., the background function can be

modified to specify small element sizes in regions of high flow gradients or solution error). A new

adapted mesh may then be constructed by simply restarting the Steiner triangulation algorithm,

and resuming triangulation until convergence to the new background function is achieved. This

strategy, of course, only produces additional refinement. In principle, mesh de-refinement may

also be achieved by removing points sequentially, and retriangulating the resulting convex cavity

for each deleted point, ill regions where the mesh element-size is smaller than that prescribed by

the background function. Tiffs may be achieved, for example, by applying the Tanemura-Merriam

Delaunay triangulation algorithm to the vertices of the cavity which is created upon the removal of a

point from the current mesh. In three dimensions, however, it is possible to encounter cavities which

cannot be tetrahedralized, and a more sophisticated approach may be required. An alternative is

to maintain a data-structure which encodes a hierarchical history of the triangulation construction,

as suggested by Barth [51].

4.2.3 Adaptive Remeshing

The background element-size distribution fllnction of traditional advancing-front methods may

also be modified in a solution adaptive manner. For background functions defined on a (coarse)

unstructured grid, one approach is to define the new function on the current mesh slated for

refinement [26]. The advancing-front mesh generation software can then be utilized to regenerate

a new mesh from scratch, using the newly defined background function to determine the solution-

adaptive mesh distribution. A less expensive alternative is to use local remeshing [34]. In this

approach, the current mesh is removed in various regions of the domain where the discrepancy

between current and desired mesh resolution is large. New local meshes are then generated in
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these void regions using the advancing-front method, where the initial front is determined by tile

boundary between meshed and void regions.

4.2.4 h-Refinement or Subdivision Techniques

h-refinement techniques, which rely on the subdivision of mesh elements according to a prede-

termined set of primitive operations, are both simple and efficient. These methods result ill fine

grid elements which are fully nested with their forming coarse grid elements, as well as fine grids

which contain, as a subset of their vertices, all the coarse grid vertices. These properties enable

a very accurate and efficient transfer of variables from one grid to another, as well as a simple

framework for encoding history effects to determine parent-child relationships between cells. This,

in turn, enables efficient use of de-refinement techniques. Efficiency, de-refinement, and accuracy

of interpolation make these methods ideal for transient problems. The fully nested property of

these techniques has also been exploited for constructing unstructured multigrid algorithms based

on such meshes (see chapter on multigrid methods).

The main drawback of such methods is the possibility of generating ill-shaped elements and

meshes with arbitrarily high connectivity at isolated vertices. In order to avoid such situations.

strict rules on the permitted element subdivision types must be enforced. A set of primitives for

the subdivision and de-refinement of three-dimensional tetrahedra are given by Lohner [47], and

reproduced in Figure 24.

2:4
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Figure 24: Rules for subdivision refinement of three dimensional tetrahedral meshes.

1:2, 1:4, and 1:8 refinements are permitted. Subsequent refinements of 2:4, 2:8_ and 4:8 are also

permitted. However, if a 1:2, 1:4, or 2:4 configuration is to be refined further, it. must first be
transformed to a 1:8 refinement, and then its child elements refined recursively. When applying

these rules to a set of elements in a mesh, care must be taken to ensure compatible refinemenl

patterns are obtained on neighboring elelnents, and to avoid jumps larger than 8:1 between neigh-

boring elements. This is achieved by itera.tively modifying the refinement types on groups of mesh
elements until a compatible pattern is achieved.
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Figure 25: Example of three-dimensional mesh adaptation by subdivision for transient

shock-wave problem over an unfriendly configuration. (Reproduced from [52] with permis-
sion).

Figure 25 illustrates an example of a transient shock wave problem computed with an adaptive

h-refinement technique, taken from [52], using the technique described above. Another method for

avoiding ill-shaped elements and poor mesh connectivity is to perform an edge-swapping or face-

edge swapping operation in two dimensions or three dimensions, respectively, after the element

subdivision operations, in order to improve the mesh topology. While substantial imt)rovement

in mesh quality can be obtained, particularly if the strict refinement rules have been relaxed,

the nested property of the meshes is lost, and the parent-child history essential for de-refinement

becomes more complicated to recover.

4.2.5 Mesh Movement Techniques

Mesh movement techniques involve the movement of mesh vertices in order to improve the dis-

cretization accuracy, by drawing points towards regions of high solution error, and away from

regions of excessive resolution. These are often performed without altering the mesh connectivity,

which makes then particularly simple to implenlent. While they have proved useful for structured

meshes (where the mesh structure must be preserved), they are rarely used in this form for un-

structured meshes, since mesh refinement is easily implemented. They are most often employed in

conjunction with other adaptive meshing techniques a.s a. smoother, in order to improve local grid

quality. A simple construction of Laplacian-type smoothing operations for two-dimensional meshes

is given by updating the coordinates of each mesh point as:

N

1 _-_(xO_ d _ xk)xneu' ---- x°ld + j,_'--7
k=l

1 m

k=l

where the summation is over all the neighboring vertices of tile considered point. This procedure

minfics a Jacobi iteration for a Laplacian operator on the coordinates of the grid points, and can be

applied iteratively for all grid points. This particular formulation does not exclude the possibility

of forming negative area elements. Although formulations have been developed for excluding such

possibilities, they are often expensive and difficult to solve. A simpler approach is to unsmooth

grid points in regions where negative elements are created. This approach, combined with the use
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of face-edgeswappingfor improvinggrid connectivity,cansubstantiallyimprovemeshquality (c.f.
Figure14).

While meshmovementmethodshaveseldombeenemployedas a solution-adaptivemeshing
procedurefor unstructuredmeshes,a notableexceptionis the useof thesetechniquesfor shock
fitting purposes[53,54]. If themeshpointsof a triangularmesharedisplacedin sucha manneras
to alignthe meshedgeswith theshocksin theflow, then it is possibleto capturetheshockovera
singlemeshcell interfaceusing,for example,acell-centeredschemewith a Riemaninterfacesolver.

.aa--a
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Figure 26: Original mesh, adapted mesh, and corresl)onding solutions, using mesh-

movement shock fitting approach. (Reproduced from [54] with permission).

Figure 26 illustrates the use of this technique for capturing a bow and fishtail shock about a

supersonic airfoil. Not only can very weak shocks be well captured, but the required number of

grid points and computational effort is much lower than for mesh refinement techniques.

5 Stretched-Mesh Generation

The drive towards full Navier-Stokes solvers has necessitated the development of stretched grid

generation techniques in order to resolve the thin boundary-layer and wake regions which are

characteristic of high-Reynolds-number viscous flows. Proper boundary-layer and wake resolution

usually requires mesh spacing several orders of magnitude smaller in the direction normal to the

boundaries than in the streamwise direction, resulting in large cell aspect-ratios in these regions.
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The application of the triangulation methods described in the preceding sections to these types

of mesh-point distributions results in awkward triangulations, which are ill-suited for numerical

computations. This is due to the fact that most of these methods have been conceived for the

generation of isotropic meshes, and are ill-suited for the generation of high-aspect-ratio elements.

Consider, for example, the Delaunay triangulation of such a point-set. In two dimensions, Delaunay

triangulations are equivalent to max-rain triangulations, i.e., they correspond to the triangulation

which maximizes the smallest angles of all elements. Since high aspect-ratio triangles necessar-

ily contain at least one very small angle, Delaunay triangulations actually attempt to avoid the

generation of such elements.

There are two possible approaches in dealing with these difficulties. The first is to make use of

alternative element types in regions of high mesh stretching, such as quadrilaterals in two dimensions

and prisms or hexahedra in three dimensions [55, 56]. The second approach is to define the types

of triangle/tetrahedral elements which are desirable for stretched mesh generation, and to modify

existing methods or devise new techniques for generating meshes which contain such elements.

In practice, both approaches are viable. In fact, the two approaches are less distinct than may

be expected, since it is always possible to subdivide a mixed-element mesh into a fully triangular

or tetrahedral mesh, and similarly most highly stretched triangular/tetrahedral meshes can be

transformed into mixed quadrilateral/triangular or prismatic-tetrahedral meshes by identifying

appropriate mesh edges for removal [15, 43]. In fact, the definition of a stretching direction in

itself implies a certain degree of local structure in the mesh, which enables the simple extraction of

quadrilaterals/prisms from a triangular/tetrahedral mesh. Similarly, no loss of flexibility is implied

by the use of semi-structured quadrilateral or prismatic meshes in highly-stretched regions. The

main drawbacks of using mixed-element meshes is the lack of homogeneity in the grid structure,

which may complicate procedures such as flow solution and mesh adaptation. The advantages are

reduced overheads for these same procedures, due to the lower overall connectivity of these mesh

elements and the resulting reduction in the number of mesh edges. In three dimensions, the use

of prismatic elements are particularly attractive, since this permits the use of triangular surface
meshes.

If fully triangular/tetrahedral meshes are to be employed, a characterization of the optimal

stretched triangle shape needs to be defined. In [57], it is shown how the accuracy of a two-

dimensional finite-element approximation on triangular elements degrades as the ma.'dmum angle
of the elements increases.

(a) (b)

7.

Figure 27: Illustration of two types of high aspect ratio triangles: non-obtuse (a) and
obtuse (b).

Thus, as shown in Figure 27, stretched obtuse triangles which contain one large angle and two small

angles are to be avoided, while stretched nearly right-angle triangles, with one small angle and two

nearly right angles are to be preferred. (Similarly, one may infer that the types of tetrahedra which

result from the subdivision of a thin prism in 3D are desirable). Thus, a triangulation procedure

which avoids obtuse triangles in favor of right-angle triangles would be desirable. It should be
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noted , however, that even if a "perfect" triangulation scheme exists, acceptable mesh elements will

only be obtained provided tile vertices are positioned appropriately. Thus, most stretched-mesh

generation techniques involve careful point-placement strategies as well as modified triangulation
schemes.

5.1 Stretched Delaunay Point-Insertion

One of the earliest techniques for generating highly stretched triangular meshes [36, 37, 58] makes

use of a locally-mapped Delaunay triangulation point-insertion method. The basic idea is to de-

fine a local stretching vector (direction and magnitude of stretching) at each vertex. New points

are inserted into the triangulation using the Bowyer/Watson Delaunay triangulation algorithm.

However, this triangulation is carried out in a transformed space, which is obtained by locally

remapping the physical space according to the values of the stretching vector in the vicinity of

the new point. This results in a nearly isotropic Delaunay triangulation in the transformed space,

but in a stretched Delaunay triangulation in physical space, where triangle circumcircles become

circumellipses, as shown in Figure 28.

T

Figure 28: Circumellipse of a stretched Delaunay triangulation.

Jk

The problem of constructing a global mapping for complex domains with variable distributions of

stretching represents a formidable task. However, since the the Delaunay triangulation is a local

construction, the problem can be formulated in a simpler manner, using local mappings. Each

time a new point is to be inserted, a local mapping may be constructed, using the local values

of the stretching vectors, which may be averaged and taken as constant throughout the region

to be restructured. This enables the use of a variable stretching distribution, but requires the

distribution of stretching to be smooth, and to vary slowly with respect to the point-distribution.

In fact, a close coupling between the stretching and mesh-point distributions is required in order to

ensure the generation of appropriately shaped triangular elements. In the present approach, this

is achieved by generating both mesh-point and stretching distributions from a set of overlapping

stretched structured meshes. The original method [37] can be summarized as follows:

Step 1: Generate a highly stretched structured mesh about each geometry component.

Step 2: Filter out far-field and downstream wake points in these structured meshes.

Step 3: Define a stretching vector at each remaining point, based on the local structured grid-cell

orientation, stretching direction, and aspect-ratio (stretching magnitude).

Step 4: Using the Bowyer/Watson algorithm, construct the (unstretched) Delaunay triangulation

of this set of points.

Step 5: Smooth the distribution of stretching vectors by performing several passes of averaging

stretchings with their neighl)oring values.
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Step 6: Swaptheedgesof themeshaccordingto theDelaunayin circlecriterion,measuredin the
locallymappedspace,asdefinedby tile averagelocalstretchingvector(i.e., a stretchedDelaunay
in ellipsecriterion).
Step 7: Smooththe mesh-pointdistribution and reswapthe edges(this stepmay be repeated
severaltimes).

Theuseof point-setsderivedfrom structuredmeshesensuresthat thepointswill bedistributedin
a.configuration which favors the formation of nearly right-angle triangles in the highly stretched

regions of the mesh, such a.s near tile walls and in the wake regions. Step 3 ensures the compatibility

between the stretching distribution (and thus triangulation criterion) and point distribution, while

step 5 is necessary to guarantee a. smooth distribution of stretching in regions where tire structured

meshes overlap. It is noteworthy that an initial triangulation is required in order to accomplish

this smoothing. Figure 29 illustrates a stretched unstructured mesh produced by this technique for

a simple airfoil configuration.

Figure 29: Stretched unstructured mesh produced by mapped l)elaunay triangula.tion

procedure for RAE 2822 airfoil.

The present method permits a smooth transition between stretched and unstretched regions, as

well as between two neighboring stretched regions, and enables a straight-forward implementation

of adaptive meshing techniques. New mesh points may be inserted into the existing mesh by first

assigning them a stretching vector taken a.s the average of the neighboring stretching vectors, and

then using the Bowyer/Watson algorithm in the locally stretched space to triangulate the new

point. The final mesh may be post-processed with several passes of smoothing and edge-swapping.

An example of an adaptively generated stretched unstructured mesh about a four-element airfoil

is illustrated in Figure 30.
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Figure 30: Adapted stretched mesh for computing viscous flow over four-element airfoil.

In retrospect, this mesh generation approach can be viewed as tlle construction of an initial (De-

launay) triangulation, followed by an edge-swapping reconnection phase governed by a criterion

determined by a distribution of stretching. In this respect, it is similar to some of the more recent

methods for constructing stretched triangulations.

5.2 Hybrid Methods

One of the most evident techniques for constructing stretched meshes for viscous flows is to use a

hybrid technique which makes use of a structured mesh in the thin boundary-layer and wake regions,

which require high degrees of stretching, and an unstructured mesh in the regions of inviscid flow,

where isotropic constructions are desirable. Ill two dimensions, the structured portion of the mesh

consists of quadrilaterals, while in three dimensions either hexahedra or prismatic (semi-structured)

elements may be used. These elements may be later subdivided into triangles or tetrahedra to

produce a homogeneous mesh, or alternatively they may be retained, and the flow solver may be

modified to capitalize on the local grid structure.

An example of a hybrid approach to stretched mesh generation consists of generating a local

structured mesh using a hyl)erbolic mesh generation technique, up to a prespecified distance away

from the boundary surfaces, and an advancing-front unstructured mesh generation technique to

complete the mesh by filling in the remainder of the domain with an isotropic unstructured mesh

[56]. The problems associated with hybrid mesh constructions involve the adequate definition of

the thickness of the structured mesh layer, as well as difficulties involved in concave regions or

regions where neighboring boundaries are in close proximity, which may result in overlapping of
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the structured meshes. Another difficulty consists of producing a mesh with a smooth transition

between stretched structured regions and isotropic unstructured regions. Many of these difficulties

can be overcome by employing a structured grid layer of variable thickness.

5.3 Semi-Structured-Unstructured Hybrid Meshes

The hybrid structured-unstructured approach may be made more flexible by employing so-called

semi-structured meshes in the stretched mesh regions [59]. Semi-structured meshes are essentially

structured meshes with a variable thickness or normal resolution. A semi-structured mesh may

be constructed by first generating a structured mesh about each geometry component, over a

distance which covers a significant portion of the domain (i.e., a distance much greater than the

boundary-layer thickness), and then removing the regions of the mesh which overlap with neighbor-

ing structured meshes and/or geometry components, as well as regions of the mesh where stretching

is not required, i.e., where the structured mesh cell aspect-ratios are less than unity. The remaining

portion of the doma.in is then gridded with an isotropic triangulation scheme. This results is an

automatic determination of the inner-mesh thickness, and a more smooth transition between the

inner and outer meshes.

Figure 31: Semi-structured mesh gener-

ated prior to completion of isotropic region.

Figure 32: Final Unstructured mesh gen-

erated using semi-structured approach.

An example of a semi-structured mesh generated by the author is depicted in Figures 31 and

32. The outer boundary is somewhat ragged, but this presents no difficulty for the unstructured

mesh approach which is used to complete the mesh. In this case, the advancing-front Delaunay

triangulation scheme was employed in the isotropic regions of the domain, and elements of the semi-

structured mesh have been subdivided into triangles. A noteworthy point concerns the structure

of the mesh in the wake regions. While highly stretched meshes are required in wake regions,

unless these are to be carried to the outer boundary of the domain, they must be blended with

the isotropic portion of the mesh in a smooth manner. In the present implementation, this is

accomplished by coarsening the wake-point distribution in the normal direction increasingly in the

downstream direction, and readjusting the connectivity. This operation is performed prior to the

generation of the isotropic portion of the mesh, since it results in a modification of the initial

boundary discretization of the remaining area to be gridded isotropically.

The drawbacks of this method are the requirement of being able to generate structured meshes

about arbitrary geometry components, the task of locating overlapping structured mesh regions,
and the ability of the method to merge two neighboring semi-structured meshes.
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5.4 Advancing-Layers Method

The advancing-layers method [60, 61, 62, 63, 64] represents a generalization of the concept of semi-
structured meshes. Rather than construct an inner semi-structured mesh by truncating a structured

mesh, the advancing-layers technique uses structured hyperbolic mesh generation principles locally

at each boundary edge or face to advance a new layer in the normal direction, thus creating a new

cell. Advancing-layers can also be viewed as a modification to the unstructured advancing-front

algorithm to create stretched quadrilateral (or prismatic) elements using different point-placement
and reconnection strategies. This is achieved by capitalizing on the similarities between hyperbolic

mesh generation and advancing-front techniques.
The point placement strategy of the advancing-layers method relies on the surface normals of

the boundary discretization. A line segment normal to the boundary surface is first associated with

each boundary point. These normals are often smoothed by averaging their orientations with those

of their neighbors. Progressive smoothing, which vanishes near the boundary and increases away

from the boundary is typically employed. Quadrilateral elements (or prismatic elements in three

dimensions) are created by placing new points along the boundary normals and connecting them

to neighboring points in a specified pattern.

The layers are advanced out from the original discretized boundaries with an increasing step-

size which results in progressively decreased stretching. For each normal stack of cells associated

with a boundary edge or face, the advancing process is terminated either when an opposing front

is encountered, or when the cell aspect-ratio becomes close to unity. Once the advancing-layers

procedure terminates, the remainder of the domain is filled in with an isotropic unstructured mesh,

as in the previous methods. While the rate of growth of the advancing layers is typically prescribed,

a background function is used to determine the resolution of the initial boundary discretization
as well as to control that of the unstructured portion of the mesh. When the advancing-layers

phase terminates, the existing mesh looks much like the semi-structured or truncated hypert)olic

structured mesh of Figure 31. A three-dimensional example of the advancing layers method, taken

from [64], is depicted in Figure 33, for a four-element wing configuration, showing the surface mesh,

and the partially completed mesh of stretched layers. As in the semi-structured mesh procedure,

the layers may be conserved as quadrilaterals or prisms in two or three dimensions respectively, or

they may be subdivided into triangles or tetrahedra.

, 1

i

Figure 33: Illustration of advancing-layers method for three-dimensional unstructured

mesh generation about segmented wing geometry. (Reproduced from [64] with permission).
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5.5 Advancing-Front Min-Max Triangulations

A somewhat more unified approach to generating highly stretched triangulations involves tile use

of min-max triangulations, i.e., triangulations which mininlize the maxinlum angles produced ill

the elements. While Delaunay triangulations were written-off as unsuitable for stretched mesh

generation, the desire to avoid obtuse or large angle triangles ill such meshes implies the feasibility

of using min-nia.x triangulations for generating stretched meshes.

However, connectivity strategies alone cannot guarantee high quality meshes, and thus conl-

patible point-placement strategies must be developed. The advancing-front lnin-nlax triangulation

algorithm of Marcum [43] makes use of two distinct point placement strategies, one for highly

stretched regions of the mesh, and another for isotropic regions. Ill the stretched mesh regions,

the point placement strategy resembles that described ill the advancing-layers method, i.e., points

a.re placed along smoothed boundary normal segments. Ill tile isotropic regions, points are placed

according to tile salne rules described for the advancing-front Delaunay triangulation algorithm

of section 3..5, making use of a background element-size distribution function. The mesh gener-

ation process begins by generating a coarse triangulation which covers the entire domain. The

domain boundaries are then discretized according to the background function, and these boundary

points are inserted into the existing triangulation. Once all boun(lary points have been inserted,

the boundary integrity is recovered. Tile advancing-front inin-lllax procedure is then initiated by

creating new points using the appropriate point-placenient strategy and inserting each point into

tile existing triangulation using the nlhl-nlax variant of tile Green-Sibson algorithnl (i.e., forced

triangulation followed by edge-swapping). The unifying feature of this strategy is that tile inser-

lion an(1 trialtgulation of new l)Oil|ts is identical ill stretched alld uitstretched regions. The point

placement methods are however different ill these two regions, and the method retains a somewhat

hybrid character. All example of a stretched unstructured mesh generated by this technique is

shown in Figure 34.
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Figure 34: Stretched unstructured mesh produced by advancing-front rain-max trian-

gulation procedure for familiar two-dimensional geometry, with illustration of stretched
triangulation over the coast of Belgium. (Reproduced from [,13] with pernfission).

'File method has also been demonst.rated in three dimensions, as shown in Figure 35. In three

dimensions, each time a Itew point is inserted, tile mesh must first I)e swapl)ed to a local Delaunay
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configuration,andthen to the min-maxconfiguration,in orderto attain a moregloballyopt.imun_
final min-maxconfiguration,asdescribedin section3.5.

An alternatepoint-placementstrategyfor min-maxtriangulationswhichdoesnot rely on an
advancing-frontis given by Barth [65]. Oneof the drawbacksof the relianceon rain-maxtri-
angulationsis the possibilityof the min-maxcriterion resultingin undesirableconnectivitiesfor
seeminglywelldistributedvertices.For highlystretchedmeshes,the min-maxtriangulationmay
be very sensitiveto the placementof vertices,with smalldisplacementsleadingto substantially
different,connectivities.Thepreciseplacementof grid pointsin thehighlystretchedregionsis thus
muchmorecritical than in "forced"triangulationmethodssuchastheadvancing-layersmethod.
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Figure 35: Section of an advancing-front min-max triangulation grid in three dimensions

about an F-18 aircraft configuration. (Reproduced from [43] with permission).
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